Skip to content
Blog
Build a Tableau-Like BI Dashboard in 2025: Step-by-Step Guide with PyGWalker & Graphic Walker

How to Build a Tableau-Like BI Dashboard in 2025

(No Code? No Problem!)

In 2025, data-driven decision-making is more accessible than ever. With open-source tools like PyGWalker (Python) and Graphic Walker (JavaScript), you can now transform raw data into interactive, Tableau-style dashboards in minutes—no expensive licenses required. Whether you’re a data scientist, developer, or analyst, this guide will show you how to harness these tools like a pro.


Why PyGWalker and Graphic Walker?

  • 🚀 Open-Source & Free: Ditch costly tools like Tableau or PowerBI.
  • 🔌 Seamless Integration: Works with Python (Pandas, Streamlit) and JavaScript (React, Next.js).
  • 🖱️ Drag-and-Drop Simplicity: Intuitive interface for instant visualizations.
  • 📊 Enterprise-Ready: From Jupyter notebooks to production React apps.

Step 1: Choose Your Tool

For Python Users (PyGWalker)

Install the library:

pip install pygwalker  

Perfect for: Jupyter notebooks, Streamlit apps, or rapid data exploration.

For JavaScript Developers (Graphic Walker)

Install the React component:

npm install @kanaries/graphic-walker  

Ideal for: Embedding analytics into React, Next.js, or custom web apps.


Step 2: Build a Bike-Sharing Dashboard with PyGWalker + Streamlit

1. Import Libraries & Load Data

import pandas as pd  
import streamlit as st  
from pygwalker.api.streamlit import StreamlitRenderer  
 
# Optimize Streamlit layout  
st.set_page_config(page_title="DC Bike Sharing Analytics", layout="wide")  
st.title("🚲 DC Bike Sharing Dashboard")  
 
# Load data with caching  
@st.cache_data  
def load_data():  
    return pd.read_csv("bike_sharing_dc.csv")  # Replace with your dataset  
 
df = load_data()  

2. Initialize PyGWalker

@st.cache_resource  # Cache to save memory  
def init_pygwalker():  
    # Use 'rw' mode to save/load chart configs  
    return StreamlitRenderer(df, spec="./gw_config.json", spec_io_mode="rw")  
 
renderer = init_pygwalker()  

3. Launch the Interactive Dashboard

renderer.explorer()  

Run the app:

streamlit run app.py  

💡 Pro Tip: Use spec_io_mode="rw" to save your dashboard layout for future sessions!


Step 3: Customize Your Dashboard

  1. Drag-and-Drop Charts:
    • Drag columns to encode axes, colors, or sizes.
    • Switch between mark types (bar, line, scatter, etc.).
  2. Add Filters:
    • Filter data dynamically (e.g., show only weekends or specific temperatures).
  3. Save & Share Configs:
    • Export your dashboard layout to gw_config.json for team collaboration.

PyGWalker BI Dashboard Demo
Alt text: "Interactive BI dashboard demo analyzing bike-sharing data with PyGWalker."


For React Developers: Embed with Graphic Walker

import GraphicWalker from '@kanaries/graphic-walker';  
 
function App() {  
  const data = [...] // Your dataset or API response  
  return (  
    <div className="container">  
      <h1>Bike Sharing Analytics</h1>  
      <GraphicWalker data={data} />  
    </div>  
  );  
}  
  • Customize themes, add authentication, or connect to live databases.
  • Deploy anywhere: Vercel, Netlify, or your own infrastructure.

FAQs

Q: Is PyGWalker a good open-source Tableau alternative?
A: Absolutely! It mirrors Tableau’s UI but integrates directly into Python workflows.

Q: Can I use Graphic Walker with a SQL database?
A: Yes! Connect via REST APIs or libraries like axios to fetch live data.

Q: How to optimize performance for large datasets?
A: Use caching (@st.cache_data), aggregate data pre-processing, or database sampling.


Why This Approach Wins in 2025

  1. Cost-Efficiency: No per-user licensing fees.
  2. Flexibility: Deploy in notebooks, web apps, or internal tools.
  3. Scalability: From small CSVs to BigQuery pipelines.

Ready to Build?